Organisation de l’épithélium intestinal et les cellules souches

La régulation du renouvellement de l’épithélium intestinal : des cellules souches au contrôle de la différenciation et de la migration vers l’apex

Notre équipe a investi une part importante de ses efforts à mieux comprendre les mécanismes cellulaires et moléculaires qui régulent la prolifération des cellules souches et l’amplification de leur cellules filles pour mener à la différenciation des cellules, à leur migration le long des villosités et à leur extrusion à l’apex des villosités, un processus qui se réalise en moins de 5 jours dans l’intestin humain. L’épithélium intestinal est le tissu qui se renouvelle le plus rapidement dans l’organisme, suivant un processus bien établi, soit le maintien de la population souche dans le tiers inférieur des cryptes, son expansion dans la zone d’amplification dans le tiers médian, le processus de différenciation terminale dans le tiers supérieur puis la migration des cellules le long des villosités et leur extrusion à l’apex. Chaque étape est régulée de manière étroite. Au fil des ans, les travaux réalisés dans le laboratoire ont permis d’identifier plusieurs voies de signalisation qui sont impliquées dans la régulation fine des fonctions cellulaires qui a lieu dans la crypte (Figure 1). Ces fonctions sont en lien avec les interactions cellulaires se produisant avec les éléments de la matrice extracellulaire (laminines, collagènes, etc.) par le biais des récepteurs exprimés à la surface des cellules de manière différentielle le long de l’axe crypte-villosité (Figure 2).

Figure 1. Mécanismes de régulation de la prolifération et de la différenciation dans la crypte intestinale humaine. Les cellules souches sont localisées dans le tiers inférieur des cryptes. Elles produisent une population de cellules filles qui sera amplifiée dans le tiers médian et qui entreprendra un programme de différenciation en atteignant le tiers supérieur. Le maintien des cellules souches dépend de l’activation de la voie Wnt alors que la différenciation est activée par les facteurs de transcription CDX2, HNF1 et GATA4. Différents mécanismes interviennent pour ralentir la différenciation des cellules lors de l’amplification, dont des mécanismes épigénétiques impliquant le complexe de répression du groupe des polycombs 2 (PRC2), l’activité des histones désacétylases (HDACs) et la voie Hippo via ses effecteurs YAP et TAZ. Enfin, une population de cellules souches de réserve BMI-1 a été identifiée avec l’expression du cilium primaire.   
Figure 2. Les interactions cellulaires avec la matrice sont impliquées  dans la régulation des principales fonctions  cellulaires comme la prolifération, la différenciation et la migration cellulaire. Les travaux réalisés dans notre laboratoire ont permis de découvrir plusieurs interactions clés pour la régulation des fonctions des cellules intestinales le long de l’axe crypte-villosité comme l’interaction de l’intégrine a7b1 avec la laminine-511 qui génère un effet inhibiteur sur la différenciation, la fibronectine qui via sont récepteur a5b1 active la prolifération et le fibrinogène qui réduit l’adhérence des cellules à l’apex des villosités.    

Ces données ont fait l’objet de plusieurs publications  dont les principales sont incluses dans la liste qui suit : 

Posttranslational regulation of sucrase-isomaltase expression in intestinal crypt and villus cells. Beaulieu JF, Nichols B, Quaroni A. J Biol Chem. 1989 Nov 25;264(33):20000-11. https://pubmed.ncbi.nlm.nih.gov/2684965/

Immunolocalization of extracellular matrix components during organogenesis in the human small intestine. Beaulieu JF, Vachon PH, Chartrand S. Anat Embryol (Berl). 1991;183(4):363-9. https://pubmed.ncbi.nlm.nih.gov/1714254/

Differential expression of the VLA family of integrins along the crypt-villus axis in the human small intestine. Beaulieu JF. J Cell Sci. 1992 Jul;102 ( Pt 3):427-36. https://pubmed.ncbi.nlm.nih.gov/1506425/

Expression of tenascin in the developing human small intestine. Beaulieu JF, Jutras S, Kusakabe M, Perreault N. Biochem Biophys Res Commun. 1993 May 14;192(3):1086-92. https://pubmed.ncbi.nlm.nih.gov/7685160/

Relationship between tenascin and alpha-smooth muscle actin expression in the developing human small intestinal mucosa. Beaulieu JF, Jutras S, Durand J, Vachon PH, Perreault N. Anat Embryol (Berl). 1993 Aug;188(2):149-58. https://pubmed.ncbi.nlm.nih.gov/7692766/

Reciprocal expression of laminin A-chain isoforms along the crypt-villus axis in the human small intestine. Beaulieu JF, Vachon PH. Gastroenterology. 1994 Apr;106(4):829-39. https://pubmed.ncbi.nlm.nih.gov/8143989/

Expression of the alpha-5(IV) collagen chain in the fetal human small intestine. Beaulieu JF, Vachon PH, Herring-Gillam FE, Simoneau A, Perreault N, Asselin C, Durand J. Gastroenterology. 1994 Oct;107(4):957-67. https://pubmed.ncbi.nlm.nih.gov/7926486/

Tenascin may not be required for intestinal villus development. Desloges N, Simoneau A, Jutras S, Beaulieu JF. Int J Dev Biol. 1994 Dec;38(4):737-9. https://pubmed.ncbi.nlm.nih.gov/7540034/

Cellular fibronectin expression is down-regulated at the mRNA level in differentiating human intestinal epithelial cells. Vachon PH, Simoneau A, Herring-Gillam FE, Beaulieu JF. Exp Cell Res. 1995 Jan;216(1):30-4. https://pubmed.ncbi.nlm.nih.gov/7813630/

Extracellular heterotrimeric laminin promotes differentiation in human enterocytes. Vachon PH, Beaulieu JF. Am J Physiol. 1995 May;268(5 Pt 1):G857-67. https://pubmed.ncbi.nlm.nih.gov/7539221/

Appearance and distribution of laminin A chain isoforms and integrin alpha 2, alpha 3, alpha 6, beta 1, and beta 4 subunits in the developing human small intestinal mucosa. Perreault N, Vachon PH, Beaulieu JF. Anat Rec. 1995 Jun;242(2):242-50. https://pubmed.ncbi.nlm.nih.gov/7545357/

Extracellular matrix components and integrins in relationship to human intestinal epithelial cell differentiation. Beaulieu JF. Prog Histochem Cytochem. 1997;31(4):1-78. https://pubmed.ncbi.nlm.nih.gov/9088045/

Relation between integrin alpha7Bbeta1 expression in human intestinal cells and enterocytic differentiation. Basora N, Vachon PH, Herring-Gillam FE, Perreault N, Beaulieu JF. Gastroenterology. 1997 Nov;113(5):1510-21. https://pubmed.ncbi.nlm.nih.gov/9352853/

Expression of the alpha9beta1 integrin in human colonic epithelial cells: resurgence of the fetal phenotype in a subset of colon cancers and adenocarcinoma cell lines. Basora N, Desloges N, Chang Q, Bouatrouss Y, Gosselin J, Poisson J, Sheppard D, Beaulieu JF. Int J Cancer. 1998 Mar 2;75(5):738-43. https://pubmed.ncbi.nlm.nih.gov/9495242/

Identification, distribution, and tissular origin of the alpha5(IV) and alpha6(IV) collagen chains in the developing human intestine. Simoneau A, Herring-Gillam FE, Vachon PH, Perreault N, Basora N, Bouatrouss Y, Pageot LP, Zhou J, Beaulieu JF. Dev Dyn. 1998 Jul;212(3):437-47. https://pubmed.ncbi.nlm.nih.gov/9671947/

Epithelial vs mesenchymal contribution to the extracellular matrix in the human intestine. Perreault N, Herring-Gillam FE, Desloges N, Bélanger I, Pageot LP, Beaulieu JF. Biochem Biophys Res Commun. 1998 Jul 9;248(1):121-6. https://pubmed.ncbi.nlm.nih.gov/9675097/

Regulated expression of the integrin alpha9beta1 in the epithelium of the developing human gut and in intestinal cell lines: relation with cell proliferation. Desloges N, Basora N, Perreault N, Bouatrouss Y, Sheppard D, Beaulieu JF. J Cell Biochem. 1998 Dec 15;71(4):536-45. https://pubmed.ncbi.nlm.nih.gov/9827699/

Primary cultures of fully differentiated and pure human intestinal epithelial cells. Perreault N, Beaulieu JF. Exp Cell Res. 1998 Nov 25;245(1):34-42. https://pubmed.ncbi.nlm.nih.gov/9828099/

Integrins and human intestinal cell functions. Beaulieu JF. Front Biosci. 1999 Mar 15;4:D310-21. https://pubmed.ncbi.nlm.nih.gov/10077538/

Expression of functionally distinct variants of the beta(4)A integrin subunit in relation to the differentiation state in human intestinal cells. Basora N, Herring-Gillam FE, Boudreau F, Perreault N, Pageot LP, Simoneau M, Bouatrouss Y, Beaulieu JF. J Biol Chem. 1999 Oct 15;274(42):29819-25. https://pubmed.ncbi.nlm.nih.gov/10514460/

Altered expression of laminins in Crohn’s disease small intestinal mucosa. Bouatrouss Y, Herring-Gillam FE, Gosselin J, Poisson J, Beaulieu JF. Am J Pathol. 2000 Jan;156(1):45-50. https://pubmed.ncbi.nlm.nih.gov/10623652/

Human crypt intestinal epithelial cells are capable of lipid production, apolipoprotein synthesis, and lipoprotein assembly. Levy E, Beaulieu JF, Delvin E, Seidman E, Yotov W, Basque JR, Ménard D. J Lipid Res. 2000 Jan;41(1):12-22. https://pubmed.ncbi.nlm.nih.gov/10627497/

Tenascin in the developing and adult human intestine. Bélanger I, Beaulieu JF. Histol Histopathol. 2000 Apr;15(2):577-85. doi: 10.14670/HH-15.577. https://pubmed.ncbi.nlm.nih.gov/10809379/

Human cell models to study small intestinal functions: recapitulation of the crypt-villus axis. Pageot LP, Perreault N, Basora N, Francoeur C, Magny P, Beaulieu JF. Microsc Res Tech. 2000 May 15;49(4):394-406. https://pubmed.ncbi.nlm.nih.gov/10820523/

Integrins as mediators of epithelial cell-matrix interactions in the human small intestinal mucosa. Lussier C, Basora N, Bouatrouss Y, Beaulieu JF. Microsc Res Tech. 2000 Oct 15;51(2):169-78. https://pubmed.ncbi.nlm.nih.gov/11054867/

Expression of SPARC/osteonectin/BM4O in the human gut: predominance in the stroma of the remodeling distal intestine. Lussier C, Sodek J, Beaulieu JF. J Cell Biochem. 2001;81(3):463-76. https://pubmed.ncbi.nlm.nih.gov/11255229/

Interactions between laminin and epithelial cells in intestinal health and disease. Teller IC, Beaulieu JF. Expert Rev Mol Med. 2001 Sep 28;3(24):1-18. https://pubmed.ncbi.nlm.nih.gov/14585148/

Differential expression of claudin-2 along the human intestine: Implication of GATA-4 in the maintenance of claudin-2 in differentiating cells. Escaffit F, Boudreau F, Beaulieu JF. J Cell Physiol. 2005 Apr;203(1):15-26. https://pubmed.ncbi.nlm.nih.gov/15389642/

Repressed E-cadherin expression in the lower crypt of human small intestine: a cell marker of functional relevance. Escaffit F, Perreault N, Jean D, Francoeur C, Herring E, Rancourt C, Rivard N, Vachon PH, Paré F, Boucher MP, Auclair J, Beaulieu JF. Exp Cell Res. 2005 Jan 15;302(2):206-20. https://pubmed.ncbi.nlm.nih.gov/15561102/

Normalizing genes for quantitative RT-PCR in differentiating human intestinal epithelial cells and adenocarcinomas of the colon. Dydensborg AB, Herring E, Auclair J, Tremblay E, Beaulieu JF. Am J Physiol Gastrointest Liver Physiol. 2006 May;290(5):G1067-74. https://pubmed.ncbi.nlm.nih.gov/16399877/

Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells. Escaffit F, Paré F, Gauthier R, Rivard N, Boudreau F, Beaulieu JF. Biochem Biophys Res Commun. 2006 Mar 31;342(1):66-72. https://pubmed.ncbi.nlm.nih.gov/16480684/

Gene expression profiles of normal proliferating and differentiating human intestinal epithelial cells: a comparison with the Caco-2 cell model. Tremblay E, Auclair J, Delvin E, Levy E, Ménard D, Pshezhetsky AV, Rivard N, Seidman EG, Sinnett D, Vachon PH, Beaulieu JF. J Cell Biochem. 2006 Nov 1;99(4):1175-86. https://pubmed.ncbi.nlm.nih.gov/16795037/

[CDX2: a transcription factor with multiple tasks for epithelial cells of the digestive tract]. Boudreau F, Rivard N, Gendron FP, Beaulieu JF. Med Sci (Paris). 2007 Jan;23(1):7-8. https://pubmed.ncbi.nlm.nih.gov/17212918/

Laminins in the developing and adult human small intestine: relation with the functional absorptive unit. Teller IC, Auclair J, Herring E, Gauthier R, Ménard D, Beaulieu JF. Dev Dyn. 2007 Jul;236(7):1980-90. https://pubmed.ncbi.nlm.nih.gov/17503455/

Differential expression of the integrins alpha6Abeta4 and alpha6Bbeta4 along the crypt-villus axis in the human small intestine. Dydensborg AB, Teller IC, Basora N, Groulx JF, Auclair J, Francoeur C, Escaffit F, Paré F, Herring E, Ménard D, Beaulieu JF. Histochem Cell Biol. 2009 Apr;131(4):531-6. https://pubmed.ncbi.nlm.nih.gov/19107504/

Integrin alpha8beta1 regulates adhesion, migration and proliferation of human intestinal crypt cells via a predominant RhoA/ROCK-dependent mechanism. Benoit YD, Lussier C, Ducharme PA, Sivret S, Schnapp LM, Basora N, Beaulieu JF. Biol Cell. 2009 Sep 14;101(12):695-708. https://pubmed.ncbi.nlm.nih.gov/19527220/

Integrin-linked kinase regulates migration and proliferation of human intestinal cells under a fibronectin-dependent mechanism. Gagné D, Groulx JF, Benoit YD, Basora N, Herring E, Vachon PH, Beaulieu JF. J Cell Physiol. 2010 Feb;222(2):387-400. https://pubmed.ncbi.nlm.nih.gov/19885839/

Intestinal epithelial wound healing assay in an epithelial-mesenchymal co-culture system. Seltana A, Basora N, Beaulieu JF. Wound Repair Regen. 2010 Jan-Feb;18(1):114-22. https://pubmed.ncbi.nlm.nih.gov/20082684/

Cooperation between HNF-1alpha, Cdx2, and GATA-4 in initiating an enterocytic differentiation program in a normal human intestinal epithelial progenitor cell line. Benoit YD, Paré F, Francoeur C, Jean D, Tremblay E, Boudreau F, Escaffit F, Beaulieu JF. Am J Physiol Gastrointest Liver Physiol. 2010 Apr;298(4):G504-17. https://pubmed.ncbi.nlm.nih.gov/20133952/

Polycystin-1 is a microtubule-driven desmosome-associated component in polarized epithelial cells. Basora N, Tétreault MP, Boucher MP, Herring E, Beaulieu JF. Exp Cell Res. 2010 May 15;316(9):1454-64. https://pubmed.ncbi.nlm.nih.gov/20211617/

Integrin alpha8beta1 confers anoikis susceptibility to human intestinal epithelial crypt cells. Benoit YD, Larrivée JF, Groulx JF, Stankova J, Vachon PH, Beaulieu JF. Biochem Biophys Res Commun. 2010 Aug 27;399(3):434-9. https://pubmed.ncbi.nlm.nih.gov/20678483/

Collagen VI is a basement membrane component that regulates epithelial cell-fibronectin interactions. Groulx JF, Gagné D, Benoit YD, Martel D, Basora N, Beaulieu JF. Matrix Biol. 2011 Apr;30(3):195-206. https://pubmed.ncbi.nlm.nih.gov/21406227/

Isolation, characterization, and culture of normal human intestinal crypt and villus cells. Beaulieu JF, Ménard D. Methods Mol Biol. 2012;806:157-73. https://pubmed.ncbi.nlm.nih.gov/22057451/

Polycomb repressive complex 2 impedes intestinal cell terminal differentiation. Benoit YD, Lepage MB, Khalfaoui T, Tremblay E, Basora N, Carrier JC, Gudas LJ, Beaulieu JF. J Cell Sci. 2012 Jul 15;125(Pt 14):3454-63. https://pubmed.ncbi.nlm.nih.gov/22467857/

Autophagy is active in normal colon mucosa. Groulx JF, Khalfaoui T, Benoit YD, Bernatchez G, Carrier JC, Basora N, Beaulieu JF. Autophagy. 2012 Jun;8(6):893-902. https://pubmed.ncbi.nlm.nih.gov/22652752/

RGD-Dependent Epithelial Cell-Matrix Interactions in the Human Intestinal Crypt. Benoit YD, Groulx JF, Gagné D, Beaulieu JF. J Signal Transduct. 2012;2012:248759. https://pubmed.ncbi.nlm.nih.gov/22988499/

RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. Venables JP, Brosseau JP, Gadea G, Klinck R, Prinos P, Beaulieu JF, Lapointe E, Durand M, Thibault P, Tremblay K, Rousset F, Tazi J, Abou Elela S, Chabot B. Mol Cell Biol. 2013 Jan;33(2):396-405. https://pubmed.ncbi.nlm.nih.gov/23149937/

Src family kinase inhibitor PP2 accelerates differentiation in human intestinal epithelial cells. Seltana A, Guezguez A, Lepage M, Basora N, Beaulieu JF. Biochem Biophys Res Commun. 2013 Jan 25;430(4):1195-200. https://pubmed.ncbi.nlm.nih.gov/23274493/

Laminin receptor 37/67LR regulates adhesion and proliferation of normal human intestinal epithelial cells. Khalfaoui T, Groulx JF, Sabra G, GuezGuez A, Basora N, Vermette P, Beaulieu JF. PLoS One. 2013 Aug 22;8(8):e74337. https://pubmed.ncbi.nlm.nih.gov/23991217/

Integrin α1 subunit is up-regulated in colorectal cancer. Boudjadi S, Carrier JC, Beaulieu JF. Biomark Res. 2013 Mar 7;1(1):16. https://pubmed.ncbi.nlm.nih.gov/24252313/

Integrin α6A splice variant regulates proliferation and the Wnt/β-catenin pathway in human colorectal cancer cells. Groulx JF, Giroux V, Beauséjour M, Boudjadi S, Basora N, Carrier JC, Beaulieu JF. Carcinogenesis. 2014 Jun;35(6):1217-27. https://pubmed.ncbi.nlm.nih.gov/24403311/

Modulation of stemness in a human normal intestinal epithelial crypt cell line by activation of the WNT signaling pathway. Guezguez A, Paré F, Benoit YD, Basora N, Beaulieu JF. Exp Cell Res. 2014 Apr 1;322(2):355-64. https://pubmed.ncbi.nlm.nih.gov/24534551/

Histone deacetylase inhibition impairs normal intestinal cell proliferation and promotes specific gene expression. Roostaee A, Guezguez A, Beauséjour M, Simoneau A, Vachon PH, Levy E, Beaulieu JF. J Cell Biochem. 2015 Nov;116(11):2695-708. https://pubmed.ncbi.nlm.nih.gov/26129821/

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Klionsky DJ et al., Autophagy. 2016;12(1):1-222. https://pubmed.ncbi.nlm.nih.gov/26799652/

Tuning WNT-β-catenin signaling via BCL9 proteins for targeting colorectal cancer cells. Beaulieu JF. EBioMedicine. 2015 Nov 19;2(12):1846-7. https://pubmed.ncbi.nlm.nih.gov/26844253/

Epigenetics in Intestinal Epithelial Cell Renewal. Roostaee A, Benoit YD, Boudjadi S, Beaulieu JF. J Cell Physiol. 2016 Nov;231(11):2361-7. https://pubmed.ncbi.nlm.nih.gov/27061836/

Neoexpression of a functional primary cilium in colorectal cancer cells. Sénicourt B, Boudjadi S, Carrier JC, Beaulieu JF. Heliyon. 2016 May 11;2(5):e00109. https://pubmed.ncbi.nlm.nih.gov/27441280/

In silico Analysis and Site-directed Mutagenesis of Promoters. Boudjadi S, Beaulieu JF. Bio Protoc. 2017 Mar 20;7(6):2181. https://pubmed.ncbi.nlm.nih.gov/34458481/

Knockdown of laminin α5 stimulates intestinal cell differentiation. Lepage M, Seltana A, Thibault MP, Tremblay É, Beaulieu JF. Biochem Biophys Res Commun. 2018 Jan 1;495(1):1510-1515. https://pubmed.ncbi.nlm.nih.gov/29198708/

Identification of Response Elements on Promoters Using Site-Directed Mutagenesis and Chromatin Immunoprecipitation. Boudjadi S, Carrier JC, Beaulieu JF. Methods Mol Biol. 2018;1765:43-56. https://pubmed.ncbi.nlm.nih.gov/29589300/

Non-integrin laminin receptors in epithelia. Cloutier G, Sallenbach-Morrissette A, Beaulieu JF. Tissue Cell. 2019 Feb;56:71-78. https://pubmed.ncbi.nlm.nih.gov/30736907/

The H2A.Z histone variant integrates Wnt signaling in intestinal epithelial homeostasis. Rispal J, Baron L, Beaulieu JF, Chevillard-Briet M, Trouche D, Escaffit F. Nat Commun. 2019 Apr 23;10(1):1827. https://pubmed.ncbi.nlm.nih.gov/31015444/

ILK supports RhoA/ROCK-mediated contractility of human intestinal epithelial crypt cells by inducing the fibrillogenesis of endogenous soluble fibronectin during the spreading process. Gagné D, Benoit YD, Groulx JF, Vachon PH, Beaulieu JF. BMC Mol Cell Biol. 2020 Mar 17;21(1):14. https://pubmed.ncbi.nlm.nih.gov/32183701/

The Hippo Pathway Effector YAP1 Regulates Intestinal Epithelial Cell Differentiation. Fallah S, Beaulieu JF. Cells. 2020 Aug 13;9(8):1895. https://pubmed.ncbi.nlm.nih.gov/32823612/

Src family kinases inhibit differentiation of intestinal epithelial cells through the Hippo effector YAP1. Fallah S, Beaulieu JF. Biol Open. 2021 Nov 15;10(11):bio058904. https://pubmed.ncbi.nlm.nih.gov/34693980/

Fibrin(ogen) Is Constitutively Expressed by Differentiated Intestinal Epithelial Cells and Mediates Wound Healing. Seltana A, Cloutier G, Reyes Nicolas V, Khalfaoui T, Teller IC, Perreault N, Beaulieu JF. Front Immunol. 2022 Jun 22;13:916187. https://pubmed.ncbi.nlm.nih.gov/35812445/

Differential influence of YAP1 and TAZ on differentiation of intestinal epithelial cell: A review. Fallah S, Beaulieu JF. Anat Rec (Hoboken). 2023 May;306(5):1054-1061. https://pubmed.ncbi.nlm.nih.gov/35648375/

Primary Cilium Identifies a Quiescent Cell Population in the Human Intestinal Crypt. Sénicourt B, Cloutier G, Basora N, Fallah S, Laniel A, Lavoie C, Beaulieu JF. Cells. 2023 Mar 31;12(7):1059. https://pubmed.ncbi.nlm.nih.gov/37048132/

Integrin α7β1 represses intestinal absorptive cell differentiation. Cloutier G, Seltana A, Fallah S, Beaulieu JF. Exp Cell Res. 2023 Sep 15;430(2):113723. https://pubmed.ncbi.nlm.nih.gov/37499931/

Propulsé par WordPress.com.

Concevoir un site comme celui-ci avec WordPress.com
Commencer